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Experiments and Results
Particle Physics System

Multiple particles are initially linked and move together. The links disappear as
If a certain criterion on particle state is satisfied and all the particles move
independently thereafter.
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Encoding

The goal of the encoding process is to infer a latent interaction graph from the
observation graph, which is essentially a multi-class edge classification task.
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Accurate multi-agent trajectory prediction is critical in many real-world
applications, where a group of entities interact with each other, giving rise to
complicated behavior patterns of both individuals and the whole multi-agent system.

In this work, we address the problem of 1) extracting the underlying interaction
patterns with a latent graph structure, which can handle different types of agents in a
unified way, 2) capturing the dynamics of interaction graph evolution for dynamic
relational reasoning, 3) predicting future trajectories (state sequences) based on the
historical observations and the latent interaction graph, and 4) capturing the multi-
modality of future system behaviors.

Table 1: Comparison of Accuracy (Mean =+ Std in %) of Interaction (Edge Type) Recognition.
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A recurrent decoding process is applied to the interaction graph and observation
graph to approximate the distribution of future trajectories.
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Observation Graph and Interaction Graph o —— — ;
Observation Graph: The observation graph consists of N agent nodes and GRU I | ; ;, N

one context node. Agent nodes are bidirectionally connected to each other,andthe (f) ’ (é) \ (d) I N | ;~’ | I \\

context node only has outgoing edges to each agent node. Each agent node has : : : :

two types of attributes: self-attribute and social-attribute. Dy namic Interaction Grap L Learnmg Table 2: minADEsq / minFDEsq (Meters) of Trajectory Predictmn13D dataset). !
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is employed to enable the evolution of the interaction graph. interaction patterns. Therefore, we designed a dynamic evolving process of the e e ey s
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The encoding process is repeated every 7 (re-encoding gap) time steps to obtain
the latent interaction graph based on the latest observation graph.

A recurrent unit (GRU) is utilized to maintain and propagate the history information,
as well as adjust the prior interaction graphs.

Uncertainty and Multi-Modality

Interaction (in observation graph) In our framework, the uncertainty and multi-modality mainly come from three
Graph — > aspects: a) In the decoding process, we output Gaussian mixture distributions indicating
Py Unidirectional Edges : . .
(in observation graph) that there are several possible modalities at the next step. b) Different sampled
< - trajectories will lead to different interaction graph evolution. The evolution of interaction Table 3: minADEy, / minFDEy (Meters) of Trajectory Prediction (NBA dataset).
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model, however, tends to collapse to a single mode. Therefore, we employ an effective
mechanism to mitigate the mode collapse issue and encourage multi-modality.
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