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Abstract— How to make precise multi-agent trajectory pre-
diction is a crucial problem in the context of autonomous
driving. It is significant to have the ability to predict surround-
ing road participants’ behaviors in many different, seen or
unseen scenarios for enhancing autonomous driving safety and
efficiency. Extensive research has been conducted to improve
the overall prediction performance based on one enormous
dataset or pay attention to some specified scenarios. However,
how to generalize the prediction to different scenarios is
less investigated. In this paper, we introduce a graph-neural-
network-based framework for multi-agent interaction-aware
trajectory prediction. In contrast to recent works which use the
Cartesian coordinate system and global context images directly
as input, we propose to leverage human’s prior knowledge
such as the comprehension of pairwise relations between agents
and pairwise context information extracted by self-supervised
learning approaches to attain an effective Frenét-based rep-
resentation. We evaluate our method across different traffic
scenarios with diverse layouts and compare it with state-of-
the-art methods. We demonstrate that our approach achieves
superior performance in terms of overall performance, zero-
shot and few-shot transferability.

I. INTRODUCTION

Multi-agent behavior prediction has a pivotal role in many
real-world applications, such as autonomous driving and mo-
bile robot navigation. Making a precise prediction in different
situations gives a promise of safety with proper planning
algorithms. Human drivers can transfer their prediction and
driving ability from previous scenarios to new ones only
after driving in the new scenarios a few times. Imagine that
a driver Alice has driven in San Francisco (SF) for many
years. She goes to New York (NY) for business and rents
a car. Although she has never been to NY, where driving
behaviors and road layouts are different from those in SF,
she can be familiar with the driving patterns in NY very
quickly. However, much of the current literature on behavior
prediction pays particular attention to improving overall
prediction performance. In this work, we focus more on the
generalization problems of multi-agent trajectory prediction
in autonomous driving applications as shown in Fig. 1.

Recently, several works in machine learning and computer
vision indicate that introducing inductive bias is necessary to
improve the generalization of the deep learning framework.
The inductive biases could be specified deep learning model
structures, constraints, and context information, etc. Such
inductive bias could be used to extract general representation
of data for future usage. For instance, there exist many works
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Fig. 1: The illustration of generalization of multi-agent
trajectory prediction across different scenarios. The predictor
could be trained on a dataset of several scenarios, then tested
on several new scenarios without new data (zero-shot) or
with a small batch of data (few-shot) for training.

proposing different model structures such as graph neural
network [1], [2], transformers [3] to capture the multi-agent
interaction mechanism. These specified deep learning model
structures indeed improve the generalization, while they still
lack the subtle domain knowledge of autonomous driving
to improve the transferability in advance. Although several
works are incorporating more context information such as
high-definition maps [4], [5], [6] to improve the prediction
accuracy, most of the methods are trained in an end-to-end
style. It is not clear that if such context representation and
training strategy are efficient for generalization.

In this work, we propose an approach to utilize the context
information such as the references of agents more effectively
with leveraging human’s prior knowledge. First, we argue
that instead of providing the road layout information, i.e.,
the reference of each vehicle implicitly, such as given the
rasterized images of the high-definition map directly as input,
we can explicitly incorporate the references information to
future trajectories predictions by Frenét transformation. The
Frenét transformation can constrain the predicted trajectories
around the references, which improves the zero-shot and
few-shot transferability. Then we design a set of features
based on the human understanding of interaction behaviors
in the Frenét coordinate system serving as the inductive bias.
Lastly, in contrast to using end-to-end supervised learning,
we apply the self-supervised learning technique, which can
reduce invariant factors to get a more general representation
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for the intrinsic relative geometry information of references
of each interaction pair of agents. After obtaining the fea-
ture representation, we use a message-passing graph neural
network to capture the interaction behaviors. We argue that
such representations not only improve the overall prediction
performance but also improve the generalization and trans-
ferability significantly.
The main contributions are summarized as follows:

e We demonstrate an effective approach to leverag-
ing Frenét-based trajectory prediction and rule-based
interaction-level semantic classification to extract a
good feature representation, which enhances the trans-
ferability across different scenarios.

o We adopt a self-supervised learning technique to extract
the context information of interaction pairs and demon-
strate that it can achieve better prediction performance.

o We evaluate the overall prediction accuracy and trans-
ferability of the proposed approach on a benchmark
dataset including various interactive driving scenarios.
The framework achieves significant enhancement com-
pared with state-of-the-art methods.

II. RELATED WORK
A. Behavior and Trajectory Prediction

In recent years, there has been an increasing amount of
literature on trajectory prediction due to the rising of topics
including autonomous driving and human-robot interaction.
Early examples of research focus on using model-based or
traditional machine learning methods such as intelligent driv-
ing model [7], hidden Markov model [8] to predict the future
trajectories. With the increase of the computational power,
deep-learning-based methods become more available and
achieve superior performances compared with the traditional
methods. Furthermore, more particular issues, including how
to deal with the different number of agents, probabilistic
prediction and how to incorporate map information, are
investigated. One line of the methods such as [9], [10], [11],
[12], [13], etc. propose generative learning frameworks to
obtain the complex, multi-modal future trajectory prediction.
The development of graph neural networks [14], [1], [2],
[15], [16] and attention mechanism provided powerful tools
to solve the multi-agent prediction problems. Several works
including [17], [18], [19], [20], [21] successfully adopt such
ideas into the multi-agent trajectories problems. Other ap-
proaches focus on how to incorporate more information, such
as the high-definition (HD) map and point clouds. Convnet
[22] proposes to use the rasterized image of maps directly
as inputs of a convolutional neural network. Vectornet [4]
proposes to encode the vectors of lanes into a graph as
the context information. [23] designs a method to utilize
both the maps and LiDAR information. In contrast to these
methods extracting the future road information of one agent
implicitly from the contextual inputs such as the image or
vectors of roads, we explicitly constraint the future predicted
trajectories by mapping it into the Frenét coordinate system
according to the reference of one agent. Frenét representation

are well-investigated, especially in motion planning literature
[24] while there is little work about how to incorporate
it into trajectory prediction framework. We show that this
approach is more effective and enhances the performance of
generalizations to new scenarios.

B. Self-Supervised Learning

Since the increasing expense of labeling massive data,
researchers have shown an increased interest in learning
representations from unlabeled data. Sometimes it is impos-
sible to label data before knowing the following tasks. How-
ever, since many data have their own particular information
structures, e.g., the local relation in the image, it becomes
possible to exploit such information to obtain the intrinsic
representation for future usage. Self-supervised learning is
a technique to extract efficient representation before the
task (e.g, classification) is known. Since there is no task
information, the auxiliary (pretext) tasks should be defined
in order to discover the similarity between different features.
These pretext tasks provide pseudo labels as supervision. For
instance, color transformation and geometric transformation
are usually used in the computer vision area. Some works
propose to use the contrastive loss as the self-supervision
[25], [26], [27]. The intuitive explanation of contrastive
learning is to make similar samples closer and make dis-
similar samples repulse each other [28]. Self-supervised
learning has been empirically demonstrated to be able to
extract better representation when the labels are limited in
many applications such as image classification [25], natural
language processing [29], and reinforcement learning [30],
[31]. Recent work [32] shows that self-supervised learning
can also improve the few-shot learning performance in image
classification. We adopt the contrastive learning concepts to
extract the relative geometry information of references.

III. PROBLEM FORMULATION

Without loss of generality, we assume that there are NV
agents in a case. In different cases, there may be a vary-
ing number of agents. We have the historical observations
Oi_p 41, of each agent 4, which includes its trajectory
X{_ 1.+ and the reference information R'. The reference
R" represents the vehicle’s routing information. It can be
the middle of the lane which the vehicle is following.
Such information can be extracted from the HD map. We
denote the rasterized image of R as I', and the rasterized
image of each pair of references R’, R’ as I'/. Given such
information, we aim to predict the conditional distribution
P(Xi41:4+7|Ot—pga1.¢). We denote H as the length of the
historical horizon and F' as the length of the prediction
horizon. The variables without agent index ¢ are denoted as
the collections of different agents’ corresponding variables
(e.g. X = {X'},_1.n). For the zero-shot / few-shot learning
setting, we train our model on one dataset mixing several
scenarios and test it on several new scenarios.
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Fig. 2: Overview of the proposed framework. There are three procedures in our approaches: I Feature Representation (Sec.
IV-B). During the feature representation phase, the original multi-agent trajectory data is processed pairwise. Here we show
one pair of agents (Agent ¢ and Agent j) as an example. The blue ResNet block is pre-trained with self-supervised learning
(Sec. IV-B.2). Il Graph Neural Network (Sec. IV-C). Once we obtain the node attributes and edge attributes, we use a graph
neural network to capture the interaction mechanism between agents. III Frenét-Cartesian Transformation (Sec. IV-B). The
graph neural network predicts the future velocities of agents in the Frenét coordinate system. We integrate the predicted
velocity of each agent and transform the trajectories into the Cartesian coordinate system.

IV. METHODOLOGY
A. Framework Overview

The whole framework is introduced in three parts: feature
representation with human’s prior knowledge, graph neural
network design, and the training loss. The section of feature
representation is divided into two parts: Frenét-based trajec-
tory representation and self-supervised context representa-
tion. Sec. IV-C introduces the graph neural network, which
is divided into the attribute encoding layer, the message
passing procedure and multi-modal decoder module. Sec. I'V-
D introduces the training loss we used. A high-level summary
is shown in Fig. 2.

B. Feature Representation

1) Frenét-based Trajectory Representation: The Frenét
coordinate system is used in this work since it can represent
arbitrary reference paths efficiently. In the Frenét represen-
tation, the Cartesian coordinate (z,y) is transformed into
longitudinal distance dj,, and lateral displacement dj, given
the reference RR. Since the Frenét representation has already
included the geometry information about each vehicle’s
reference, the final prediction results will incorporate the
reference naturally. [33] argues that the topological relation-
ship between any of two references can be decomposed into
different types, and we adopt these ideas as prior knowledge
to define four types of features: node features and three types
of edge features.

For node features, we use the longitudinal speeds di .,
lateral speeds dlm, and the rasterized image I of the vehicle
i’s reference R’ as the features. The image I use the vehicle
1’s coordinate system, where the Y-axis direction of image is
the velocity’s direction. We denote the node feature selection
and extraction as a mapping I', : X — S,, where X is the
trajectory space and S is the feature space.

For edge features, we illustrate different conditions of
interaction pairs in Fig. 3. In Fig. 3 (a), when the references

(c) Edge 2

(d) No edge

Fig. 3: The illustration of different types of edges. Different
colors represent different agents. The dashed lines are the
references for agents.

of two vehicles intersect, we set the intersection point as the
origin of the Frenét coordinate system. We denote dlon
the collection of vehicle i’s and j’s longitudinal distance to
the origin point. dldg has the similar definition for the lateral
displacement. We denote A%/ as the relative position of the
vehicle ¢ and j in the Cartesian coordinate system, where
the origin point is the location of the vehicle ¢ and the Y-
axis direction is its velocity direction. We also employ the
context information of the relation between the references
of a pair of agents as one of the features C'*/. The details
of the feature C*/ will be introduced in Sec IV-B.2. In Fig.
3 (b), if two vehicles share the same reference, we define
the relative longitudinal distance 610“ between them. In Fig.
3 (c), if two vehicles’ references do not intersect while lane
change is feasible, we use 6,7 and A% as features. In Fig. 3
(d), if two references are mutually exclusive, there will be no
edge. Table I summaries the feature selections for different
types of features. We denote the edge feature selection and
extraction as a mapping I'. : & x X — S, where X is the
trajectory space and S is the feature space. We also denote
the edge type of one pair of agents ¢ and j as «;.

In order to generate such trajectory representation, there
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TABLE I: The different types of features.
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are two submodules here: reference path extraction and
coordinate transformation.

Reference Path Extraction This module aims to extract
each vehicle’s reference. If a high-definition map is provided
and the road layout is very simple, we can directly use the
reference defined in the HD map. However, if the road layout
is complicated, such as roundabouts, using the hand-crafted
references is not accurate. One better solution is to use a
few trajectory data with the same starting area and ending
area to get the approximate references. We first collect the
trajectories according to the starting and ending areas. Each
starting and ending area is defined as a quadrilateral area
indicating an agent coming from or heading to this path.
Then we can select a few data with this reference. For a
set of trajectories with the same starting and ending area,
we use a polynomial function to fit them. Then we sample
points from the fitted curve every 0.05 meter and use them
as the reference path.

Coordinate Transformation To transform coordinates
from Cartesian to Frenét, we can find the nearest point on
the references, and then calculate the lateral displacement
diy to the projection point and the longitudinal distance
dion. Through the inverse process, we can transform the
trajectories in the Frenét coordinate system back to the
Cartesian coordinate system.

2) Context Representation with Self-Supervised Learning:
Despite the Frenét coordinate system is used in the feature
representation, it only contains the geometric information of
the reference path of each vehicle. When two vehicles are
interacting with each other, their behaviors also depend on
the relations between the two reference paths. The relations
between two references have different levels of abstractions
such as topology and geometry [33]. Under the circumstance
that the references of two vehicles 7 and j intersect, we
can rasterize those two references in Image I with the
intersection point as the center point of the image. We use
different pairs of colors to indicate the vehicle’s moving
direction in order to distinguish two references. One example
is shown in Fig. 4.

We suggest that the relation between two references
is invariant to different positions (views) of vehicles. For
instance, the drivers of two different vehicles will have
the same understanding of the relation between the two
references. Besides, the orientation information of reference
for each agent has already been provided in the node

Contrastive
O—

Loss

Sample s’

Fig. 4: The contrastive learning framework. Sample s indi-
cates one sample from the rotation transformation, and s’
indicates one sample from the semantic exchanging trans-
formation. 1%/ is one example of the rasterized image of two
intersected references. The blue-yellow curve represents one
reference and the direction is from blue to yellow. The red-
purple curve represents the other reference and the direction
is from red to purple.

feature, i.e., the image I i We assume that there is an
effective abstraction that can represent the relation between
two references and use the self-supervised technique to
extract such representation. We utilize a similar approach in
SimCLR [25] to discover the similarities between different
objects by designing some pretext tasks. These pretext tasks
serve as data augmentation for generating positive samples.
Considering the property of the context images as we suggest
above, we define the family of tasks 7 as:

o Rotation: The original image is centered at the in-
tersection point, which is defined as the first point at
which two references intersect. Then the original image
is rotated randomly from 0 to 27. In Fig. 4, s shows
one sample by rotation.

o Semantic Exchanging: We need to use distinct colors
to indicate different references to avoid vagueness (i.e.
which segment belongs to which reference, what is
the direction of one reference). Since the topology and
geometry are not related to the semantic order, we
exchange the colors of two different references. In Fig.
4, s’ shows one sample by semantic exchanging.

Under those pretext tasks T, the loss function for a positive
pair of samples I and I is:
eB cos(zs,247)

Ek;és e@ cos(zs,2k)

where z, = h(enc(7%)), and I;j,Ig ~ 7(I7) are the
random samples. h is a projection head. 7(-) : Z — Z is
a random function sampled from the pretext task family
T. After training with the contrastive loss, we set C% =
enc(I%) as the representation of context information.

(I, 1) = —log (1)

C. Graph Neural Network Design

We can represent the agents in the traffic as a graph
and use a graph neural network to capture the interaction
behaviors. The graph can be defined as G = {V, £}, where
V={v}ie{l,...,N}and £ ={e;;},i,5€{l,...,N}.
v;, e;; denote the node attribute and the edge attribute,
respectively. Specifically, e;; denotes the edge attribute from
v; to v;. Given a set of trajectory observations, we can apply
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the feature selection and extraction process mentioned in Sec.
IV-B to compute the initial attributes for each node and edge.
We name this layer as the attribute encoding layer:

v = FRNN(T, (X pry1.0)), ResNet (1)),

: - G @
e?j = h(RNN(T( t7H+1:t7thfH+1:t))7Ctj)u

where f and h are the node and edge embedding functions.
Then we use the message passing mechanism similar as
[15] to reason the multi-agent interaction mechanisms. For
each node and edge, we have:
-1, m—1
5= 0 (o),

J
i = softmax(e;}),

o= (S AnWr)), m=1,.n.
JEN(v;)

3)

where fe o, denotes different edge embedding functions for
different edge types o;;. f, denotes the embedding function
for nodes. The superscripts of v;", e?}, (R :fam denote the
m-th message passing. N(v;) denotes the neighbors of v;.
In order to output multi-modal trajectory prediction, a
Gaussian mixture model is used as the multi-modal decoder
to generate the future velocities in the Frenét coordinate

system:

w; = softmax(f7,(v}")), u; = f1(0]), %5 = L (0],
{dlon,t+1:t+Fa dlat,t+1:t+F} ~ Z wj/\f(,uj, Ej)u S

J

where w;, pj;, and ¥; describe the weight, mean, and
variance of the j-th Gaussian function.

After the predicted velocities of each agent are obtained,
a first-order integrator is applied to get the predicted future
positions in the Frenét coordinate system. Then the predicted
trajectories would be transformed to the Cartesian coordinate
system to evaluate the performance. We illustrate the Frenét-
Cartesian transformation in Fig. 2.

D. Training Loss

We use the negative log-likelihood £(#, D) as the objec-
tive function during the training phase:

E(Ot—H+1:t7Xt+l:t+F)ND [_ log Py (Xt+ltt+F |Ot7H+1:t)]’
(&)
where 6 represents all the parameters of our model. Since
the direct outputs of our model are the predicted velocities
(dlon;dlal) based on the Frenét coordinate system, we can
also directly optimize the empirical loss based on the Frenét
coordinate system during training.

V. EXPERIMENT RESULTS

This section introduces the dataset, evaluation metrics and
baselines in Sec. V-A and Sec. V-B firstly. Then the com-
parisons between our method and other baseline approaches
of the overall prediction performance and transferability are
demonstrated in Sec. V-C and Sec. V-D.

A. Dataset

The experiments were conducted on the INTERACTION
dataset [34], which contains naturalistic motions of various
traffic participants in a variety of highly interactive driving
scenarios, including roundabouts, unsignalized intersection,
and lane merging. In each scenario, the data is sampled
from different locations. We choose this dataset for the
following reasons. First, the geometry of road layouts is
complicated. Most of the cases in other datasets are collected
with simple road layouts like straight multi-lane and cross-
style intersections. In contrast, the INTERACTION dataset
contains more curved, challenging road layouts such as
roundabouts. Second, it has a higher detection accuracy than
other datasets and more highly interactive cases. Therefore, it
is suitable for testing transferability across different scenarios
and multi-agent interactive behavior prediction. We selected
five urban representative scenarios (MA, FT, SR, EP-T, and
EP-R), which have various road layouts in our experiments.
We predicted the future 10 time steps (5.0s) based on the
historical 4 time steps (2.0s) in all experiments.

B. Metrics and Baselines

We adopt two widely used probabilistic prediction metrics.
One is the minimum average displacement error (mADE),
which computes the Euclidean distance between the ground
truth positions and the closest trajectory from K candi-
dates, which are sampled from the predicted probability
distribution. The other is the minimum final displacement
error (mFDE) that evaluates only the displacement error
at the last time step. Both metrics are suitable to measure
probabilistic prediction. We compare our method with five
baseline approaches about the overall performance and trans-
ferability. We provide the same input information for all the
methods. The following are the algorithms we compare: i)
LSTM. Long-short term memory is a kind of recurrent neural
networks used widely to learn the time-series pattern. We
use it as a prediction model which does not consider the
interaction explicitly; ii) Social LSTM (S-LSTM) [35]. The
model designs a social pooling mechanism based on LSTM;
iii) Social GAN (S-GAN) [18]. The model employs gen-
erative adversarial learning into S-LSTM; iv) Trajectron++
[36]. One of the state-of-the-art approaches employs spatial-
temporal graph with dynamic constraints; v) Graph Neural
Network (GNN). The network structure of this method is
quite similar to our proposed method. The difference is
that GNN uses the historical trajectories in the Cartesian
coordinate system as the node features and does not use
the routing-related edge features such as the edge types and
the relative positions in the Frenét Coordinate system. Also,
GNN does not employ our contrastive learning method to
extract context features. Hence, GNN can also serve as an
ablation method.

C. Prediction Performance in All Scenarios

1) Quantitative Results: First, we show the general pre-
diction performance of our method compared with the base-
lines. We test all the models with all the data in different
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TABLE II: Comparison of mADE / mFDE (Meters) in All Scenarios

| LSTM | S-LSTM | S-GAN | GNN |  Trajectron++ | Ours
@3.0s 0.34470.597 0.438/0.692 0.400/0.652 0.271/0.534 0.185/0.336 0.139/0.284
@4.0s 0.598/1.128 0.611/1.071 0.599 /1.042 0.469 / 0.969 0.360/0.677 0.268 / 0.562
@5.0s 0.918/1.888 0.879/1.721 0.845/1.528 0.695/1.457 0.608/1.167 0.432/0.913

(a) MA

(b) FT

(c) SR

(d) EP-T

(e) EP-R

Fig. 5: The visualization of prediction results. The box markers are the ground truth trajectories. The solid lines are the
sample trajectories with the smallest mADE. The density maps around the solid lines are generated by using kernel density
estimation (KDE) to fit the sampled trajectories. The grey dash lines are the references (R) of each vehicle. The star markers

are the starting positions of the historical trajectories.

scenarios. The prediction results on all scenarios are shown
in Table II. The units of reported metrics are meters in the
Cartesian coordinate system. We observe that all the methods
which model the interaction explicitly, such as S-LSTM, S-
GAN, GNN, Trajectron++, and Ours, are better than LSTM,
which predicts each vehicle independently. Our approach
improves about 24.9% in mADE with 3 seconds prediction
horizon and 28.9% in mADE with 5 seconds prediction
horizon compared with the best baseline (Trajectron++). It
is also about 15.5% and 21.8% improvement in mFDE with
3 seconds and 5 seconds prediction horizon, respectively. It
shows that our method has significant improvement com-
pared with baselines.

2) Qualitative Results: We visualize five typical cases
where there are more than two vehicles in Fig. 5. The ground
truth and predicted trajectories are shown in the same color
for each vehicle. We find that the prediction results in all the
scenarios are accurate. Besides, Our method is capable of
capturing subtle behaviors such as yielding or not yielding
in complicated scenarios.

D. Transferability to Other Scenarios

In this section, we compare the transferability of different
methods. All the methods are trained on the mixed data of
two scenarios: a roundabout (FT) and an intersection (MA).
We chose these two scenarios since they can cover most
of the different types of road layouts, including roundabout
and intersection so that we can train a good basic predictor
at the beginning. Then we evaluate the zero-shot and few-
shot performance of transferring to another three different
scenarios (two of them are different roundabouts, and the
other is a different intersection). The results with 5 seconds
prediction horizon are shown in Table IV. The mADE of
our approach is 32.4%, 11.0%, and 38.4% better than the
baseline methods in zero-shot transfer to SR, EP-T, and EP-
R, respectively. For few-shot learning, we randomly sample

100 trajectories for each scenario as the training data. We
demonstrate that our method performs better than the others
with 40.6%, 30.8%, and 37.4% improvements in mADE for
SR, EP-T, and EP-R. We observe that the improvement of
zero-shot / few-shot learning on EP-T is relatively small
compared with the other two scenarios. We suggest that the
reason is that the road layout of EP-T is very similar to the
one in MA, since they both include 90-degree intersections.
It also implies that the more the scenarios are similar, the
easier generalization will be. The observation also adheres
to our intuition.

TABLE III: The Models used for Ablation

| Frenét-based | Contrastive | Image

Ours v 4 v

Ours-E2E v v
Ours-no_image v

GNN v

VI. ABLATIVE ANALYSIS

We intend to answer the following questions with the
ablation models in Table III.:

o Does the self-supervised learning technique improve
the performance, and is the context image %/ useful?
We compare Ours, Ours-E2E, and Ours-no_image in
Table III. The difference between them is the way they
process the context images. Ours-no_image does not
utilize the context image 1%, Ours-E2E uses the context
image but does not use contrastive learning.

o Is the performance of the Frenét-coordinate-based
trajectory prediction better than the Cartesian-
coordinate-based one? Here we compare the model
GNN and Ours-E2E in Table III, since the only differ-
ence between these two models is whether the Frenét-
based features are used.
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TABLE IV: Comparison of mADE / mFDE (meters) in the Different Scenarios

\ \ LSTM \ S-LSTM \ S-GAN \ GNN | Trajectron++ | Ours
SR 0-shot 1.849 / 4.470 1.927 / 3.625 1.801 / 3.539 1.977 1 4.714 1.395 / 2.333 0.943 / 2.266
few-shot 1.184 / 2.452 1.458 / 3.010 1.267 / 2.385 1.180 / 2.430 1.043 / 1.816 0.620 / 1.214
EP-T 0-shot 1.278 / 2.824 1.594 / 3.207 1.655 / 3.465 1.587 / 3.607 1.092 / 1.703 0.972 / 2.279
few-shot 0.978 / 1.873 1.037 / 2.071 1.098 / 2.239 1.028 / 2.064 0.838 / 1.528 0.580 / 1.003
EP-R 0-shot 2.268 / 5.306 2.824 / 5.531 2.590 / 5.130 2.388 /5514 2.074 / 3.478 1.277 / 2.742
few-shot 1.453 / 2.970 1.520 / 3.281 1.483 / 2.739 1.393 / 2.743 1.328 / 2.376 0.831 / 1.462
A. Self-Supervised Learning Ablation < ¥ =y O "n

1) Quantitative Analysis: To prove the effectiveness of
the self-supervised learning method, we conduct experiments
on the whole dataset, including all the scenarios for the
three methods: Ours, Ours-E2E, and Ours-no_image. Ours-
E2E trains the whole model in an end-to-end fashion, and
Ours-no_image does not utilize the context image I as
one of the edge features. In Table V, we find that Ours is
about 10.2% better than Ours-E2E and approximately 16.4%
better than Ours-no_image with 5.0s prediction horizon.
Thus, it illustrates that employing self-supervised auxiliary
tasks to pre-train the feature embedding layers does help to
improve the prediction performance in general. Also, Ours-
E2E improves about 7.0% more than Ours-no_image, which
shows that the context information is indeed useful.

2) Qualitative Analysis: In Fig. 6, we show the feature
extraction results of the self-supervised learning method. We
use t-SNE to illustrate the relations between each extracted
feature. It shows that similar pairs of road references are
gathered into the same group, and the different ones are
separated. We also find that the self-supervised procedure
could also discover the similarities between the pictures
from new coming scenarios, which means our self-supervised
method has a good transferability.

TABLE V: Ablation of the Frenét Coordinate System and
Self-Supervised Learning (mADE / mFDE).

methods | @3.0s | @4.0s | @5.0s
Ours 0.139 / 0.284 0.268 / 0.562 0.432 /0913
Ours-E2E 0.151/0.318 0.295 / 0.646 0.481 / 1.052
Ours-no_image 0.162 / 0.337 0.315 /7 0.685 0.517 / 1.124
GNN 0.271 /7 0.534 0.469 / 0.969 0.695 / 1.457

B. Frenét-based Trajectory Prediction Ablation

In this analysis, we compare GNN and Ours-E2E. Notice
that GNN does not use the Frenét-based features and the self-
supervised learning, so the only difference between GNN
and Ours-E2E is whether the Frenét-based features are used.
In Table V, we find that Ours-E2E improves about 30.8%
mADE in the future 5s, which implies that our proposed
Frenét-based trajectory representation improves the predic-
tion performance remarkably.

VII. CONCLUSION AND FUTURE WORK

In this work, a graph-neural-network-based framework
with self-supervised domain knowledge is proposed to solve

EE

> |
N

Fig. 6: The t-SNE illustration of context information. Differ-
ent colors of scatters represent different pairs of references
in all scenarios. We illustrate several groups of extracted
features here and show their corresponding rasterized images.
The red rectangle shows that the new pairs of references are
clustered into the same group. The other rectangles show the
differences between different groups of extracted features.

the multi-agent human driving behavior prediction prob-
lem. We incorporate human’s prior knowledge and self-
supervised learning techniques to enhance the generalizabil-
ity and transferability across different traffic scenarios. Ex-
periments demonstrate that our approach achieves significant
improvement compared with other state-of-the-art methods.
The ablative analysis demonstrates the effectiveness of the
proposed feature representation technique. There are several
future directions to investigate, such as how to incorporate
more domain knowledge into this framework, including
traffic rules and related knowledge about other types of traffic
participants. Another interesting topic is how to design better
pretext tasks for self-supervised learning.

VIII. IMPLEMENTATION DETAILS

In the attribute encoding layer, we use GRU as the cell
of RNN to extract the historical trajectory information for
nodes and edges. We use ResNetl8 [37] to encode all the
rasterized images. We concatenate those two features and
use a MLP as function f, h in Sec. IV-C. The ResNet
for context images I/ is pretrained by contrastive learning
with a batch size of 1024. The dimensions of the image
representation and the latent variables are 32 and 16. For the
message passing procedure, f;" and f[", are MLPs. We use
different MLPs for different types of edges. The message
passing number is 3. For the multi-modal decoder module,
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the number of Gaussian kernels is 4, and we use Gumbel-
Softmax to sample 20 trajectories to calculate the mADE
and mFDE. f,, fu, and fx are also MLPs. All the MLP
modules in our model are two-layer fully connected networks
with an activation function of ReLU and a hidden size of
256. For the experiments of all scenarios, we mix all the
data from five scenarios and divide it into 5:2:3 for training,
validation, and testing. We train the model with a batch size
of 64 for 100 epochs using Adam optimizer with an initial
learning rate of 0.001. For the transferability experiments,
the datasets of different scenarios are also divided into 5:2:3
for training, validation, and testing. The initial model is
trained on MA+FT using the same hyperparameters as the
all-scenarios experiments. We sample 100 cases from the
training set of the new scenarios for the few-shot adaptation
and fine-tune the model with a batch size of 20 and an initial
learning rate of 0.0005. For all experiments, we show the
average results of three random initializations.
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